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Chapter 0.

Presentation

0.1. The programming language

OCaml  (formerly  Objective  Caml)  is  a  statically  typed,  garbage  collected,
general purpose programming language. OCaml especially emphasis software
correctness via expressive static types. OCaml features both a friendly REPL
(Read-Eval-Print-Loop) interpreter for programming in the small, and a batch
compiler for programming in the large. OCaml uses type inference to alleviate
the burden of type annotation while still offering both powerful modularity and
excellent execution speed. From an historical perspective OCaML is a dialect of
the ML family. ML is the language of choice for the implementation of theorem
provers. That's a wonderful assurance. Because if ocaml is good enough for the
Coq theorem prover there is great chances that it is also good enough for your
own project no matter how ambitious or modest.

0.2. The book license

This book is a free culture work published under Creative Commons Attribution
Share-Alike (CC-BY-SA) that everyone is welcome to contribute to. Another
OCaml  book  under  a  CC  BY  SA  4.0  license  is  https://ocamlbook.org/
(repository is https://github.com/dmbaturin/ocaml-book).

0.3. The motive

There already are plenty of OCaml blogs, tutorials and books so what makes
this book somewhat special ? Well, i wanted to write a book about algorithms, i
wanted to write a book about OCaml, i wanted to write a book about Coq and i
wanted  to  write  a  book  about  Conceptual  Graphs.  So  here  it  is,  the  most
improbable  programming  book  ever,  with  the  cherry  on  the  cake  being  a
minimalist CGIF interpreter.

0.4. Installing ocaml from your package manager

This is not recommended because the distributed ocaml package is probably not
up to date.



0.5. Installing ocaml from sources on Unix-likes

● Download the source archive https://github.com/ocaml/ocaml/archive/4.12.0.zip
● Extract the archive.
● Open a terminal at the extracted archive directory.
● Enter the following commands :

./configure
make world.opt
sudo -s     # login as root user
umask 022   # make sure to give read & execute permission to all
make install
make clean

0.6. Installing ocaml from sources on Windows-Sub-Linux

● First install WSL from the Microsoft store and create a user account 
with a password.

● Your C: drive is /mnt/c in the bash console
● Then install make and gcc :

sudo apt update        # to update the repo packages
sudo apt install make  # install gnu make
sudo apt install gcc   # install gcc

● Then continue as on a linux bash

0.7. Uninstalling ocaml when installed from sources

Enter the following commands :

rm -r /usr/local/lib/ocaml
rm /usr/local/bin/ocaml*

0.8. Installing ocaml from the opam package manager

This is the recommended way. See the opam site https://opam.ocaml.org/ 

0.9. What command for the daily development ?

For software development you need to catch the most possible static and 
dynamic errors, so i would recommend something like this : 

ocamlc.opt -w +A-ez-32 -c ...

If you just want to type-check one code file then the -i option alleviates the 
creation of object files : 

ocamlc.opt -w +A-ez-32 -i …



0.10. What command for the project final release ?

For software release you need the best possible performance, so i would 
recommend something like this : 

ocamlopt.opt -noassert -unsafe -o ...

You may add the -nodynlink switch if appropriate.

0.11. Thanks

...



Chapter 1.

The functional type

1.1.The int type

OCaml is statically typed. Actually ocaml is almost type-obsessed hence you
don't cheat ocaml at typing. It already shows when entering an integer in the
REPL prompt : 

# 1;;
- : int = 1

Now you can't ignore that 1 is a int. 
Of course the REPL prompt accepts many more arithmetic expression while 
respecting the precedence of operators :

# 1 + 2 * 3;;
- : int = 7

Unfortunately not all arithmetic expression evaluate as an int, so ocaml warns 
you when something goes wrong  :

# 1 / 0;;
Exception: Division_by_zero. 

The int range is not unlimited, it is exactly the interval [min_int,max_int] 
which is about half the size of a machine word.

1.2. The arrow type

Don't ignore the arrow type because it is the most important one. One could say
being a functional language is to have the arrow type. The arrow type is an
alternative name for the functional type, that is the type of functions. A function
is a value of the arrow type. There are several ways to construct a new function.
The fun keyword is one of them and it suffices to illustrate most functional
idioms and properties. This code :



# fun n -> n + 1;;
- : int -> int = <fun>

Creates a function that increments its argument.
Actually it's the exact same function as the predefined function succ :

# succ;;
- : int -> int = <fun>

However we can't prove it because function equality is undecidable :

# (fun n -> n + 1) = succ;;
Exception: Invalid_argument "equal: functional value".

The first thing to know about functions is that their variables are immutable.
Actually, unless stated otherwise, all ocaml variables are immutable much like
mathematical variables. Nevertheless you can assign a value to a variable, that
is function application. The actual argument just follows the applied function. 

# succ 1;;
- : int = 2

It  applies  the integer  1 to  the  succ function by juxtaposition,  no additional
parenthesis  is  needed.  An alternative  way to apply  an actual  argument  to  a
function is to swap positions (the actual argument is left, the applied function is
right) and insert the |> operator between them :

# 1 |> succ;;
- : int = 2

Otherwise the functional operator is in typical prefix position.

1.3. The arrow type rule

Let x be a value of the type TX and f be a value of the arrow type TX → TF then 
x applied to f has type TF. 
Warning: x applied to f can eventually fail or loop forever. Thus a statical type
does not ever guarantee a dynamic actual value. 

1.4. Infix operators

Another thing to know about functions is that any infix operator can be turned 
into a normal function by being parenthesized.



# (+);;
- : int -> int -> int = <fun>

This is the exact same function as fun a b -> a + b.

# fun a b -> a + b;;
- : int -> int -> int = <fun>

Warning: the * operator as a function must be written ( * ) otherwise ocaml
would read it as an opening code comment. OCaml comments are nestable, they
start with (* and end with *). Likewise the ** float operator as a function must
be noted ( ** ).

1.5. Arrow associativity

The functional type int -> int -> int is the exact same type as int -> (int
-> int).  Said otherwise,  the arrow type constructor  is  right-associative.  Or
said otherwise  fun a b -> a + b is the exact same function as  fun a ->
(fun b -> a + b). Conversely (+) a b is the exact same value as ((+) a
b). Said otherwise, ordinary function application is left-associative.
Finally, the |> operator is function application and thus is also left-associative.

1.6. Partial application

From a general function we can derive a more specialized function that accept 
one less argument. 
Here is yet another synonym of succ : 

# (+) 1;;
- : int -> int = <fun>

This is not really surprising given that, because of right-associativity, the type 
of (+) is int -> (int -> int) and (int -> int) is the type of succ.

1.7. Over-application

Surprisingly enough it is also possible to apply more actual arguments than the 
declared formal arguments. This code applies 3 actual arguments to the identity 
function :

# (fun n -> n)  (fun n -> n)  (+) 1 2;;
- : int = 3



1.8. The bool type

Many standard functions and operators (including = <> < <= >= > ) have a
bool result. The bool type has two predefined values true and false.

1.9. The conditional expression

The  if…then…else…  expression  allows  to  select  between  two  expressions
according to a boolean condition.  if…then…else… is a switchable expression,
it's not a statement. 

1.10. The conditional expression rule

Let eCOND be a bool expression and let eTRUE and eFALSE be two expressions of type
T, then the expression if eCOND then eTRUE else eFALSE has the type T.

1.11. Outermost value declarations

The let keyword binds a (eventually functional) value to a name. 

let pi = 3.1415926535898;; 
let add = fun a b -> a + b;; 
let minimum = fun a b -> if a < b then a else b;;
let maximum = fun a b -> if a > b then a else b;; 

The let binding is not permanent, a bounded name can eventually be rebound
by a newer let. As an example this code replaces the predefined abs function :

let abs = fun z -> if z >= 0 then z else -z;;

For the coder convenience both the fun keyword and the -> arrow can be 
omitted :

let add a b = a + b;; 
let minimum a b = if a < b then a else b;;
let maximum a b = if a > b then a else b;; 
let abs z = if z >= 0 then z else -z;;

1.12. Outermost recursive value declarations

The rec keyword allow a function name to be used (that is be applied) in his 
own body.
Here are some simple recursive functions :



let rec power a n =
  if n=0 then 1 else a * power a (n-1);;

let rec binomial n p =
  if (p=0) || (p=n) then 1 else
  binomial (n-1) p + binomial (n-1) (p-1);; 

let rec fibonacci n =
  if n < 2 then 1 else fibonacci (n - 1) + fibonacci (n - 2);; 

Imagine  a  frog  that  can  climb  either  1  or  2  steps  in  a  single  jump,  then
fibonacci n is how many ways this frog can climb by n steps. As presented
here  fibonacci is  pretty  slow  because  it  enumerates  all  possible  jump
sequences.  Later,  at  paragraph 1.17,  we will  present  a  much faster  iterative
version.

1.13. Mutually recursive functions

The let rec … and …  expression allows multiple functions to be used in 
each-other bodies. 

let rec odd n = if n=0 then false else even (n-1) 
and even n = if n=0 then true else odd (n-1);;

1.14. Why not allow all functions to be recursive ? 

Consider this code :

let rec id x = x
and f x = x && id true
and g x = x + id 1;;

It fails with an obscure type error.
Now consider the same code without mutual rec :

let id x = x
let f x = x && id true
let g x = x + id 1;;

Now it compiles without any type error. As a rule of thumb avoid unnecessary
complexity everywhere possible otherwise you may get a more obscure type
error than strictly needed.

1.15. Local value declarations



let v = e in E computes the expression E where all occurrences of the variable v
are replaced by the expression e.  Local variables are used either to split a large
expression into smaller chunks or to factorize common sub-expressions. In the
power function we don't want power a  (n/2) to be computed more than one
time :

let rec power a n =
  if n = 0 then 1
  else
    let an2 = power a (n/2) in
    if n mod 2 = 0 then an2 * an2
    else an2 * a * an2;;

Imagine if a were a matrix, our power function would still be quite an efficient
implementation.  The more complex the data  the more we gain by factoring
common sub-expressions.
 
1.16. Mutually recursive local values

The let rec … and … in … expression allows to declare local mutually 
recursive values, including functional values. 

# let series n =
     let rec u n = if n=0 then 1 else 2 * v (n-1)
     and v n = if n=0 then 1 else 3 + u (n-1)
     in u n;;
val series : int -> int = <fun>
# series 5;;
- : int = 26

1.17. Accumulator variables

If function arguments are immutable like in mathematics then how could they
be  augmented  ?They  are  augmented  by  applying  new  arguments  using  old
values. How do we iterate ? We iterate by recursive application. An argument
that is augmented by a recursive application is called an accumulator. 

let rec factorial acc n =
  if n = 0 then acc
  else factorial (n * acc) (n - 1)

let factorial = factorial 1

let rec power acc a n =
  if n=0 then acc
  else power (acc * a) a (n - 1)



let power = power 1 

let rec fibonacci a b n =
  if n < 2 then b
  else fibonacci b (a + b) (n - 1)

let fibonacci = fibonacci 1 1;;

The recursive step is not systematically n - 1, it's just something smaller than 
n, so n/2 is equally good and even better (because it decreases faster) : 

let rec power a n =
  if n = 0 then 1
  else if n = 1 then a
  else
    let a2 = power (a * a) (n/2) in
    if n mod 2 = 0 then a2 else a * a2;;

1.18. Tail recursion

Tail-recursion is a stack optimization that allows a recursive function to use
constant stack space (by recycling the current stack frame) instead of linear
stack  space  (by  allocating  a  new stack  frame  for  each  recursive  call).  The
simplest form of tail-recursion-optimization is using accumulator variable(s) in
order  to place the recursive-application at  the execution final  position.  Tail-
recursion is the functional equivalent to procedural loops.

Our odd and even functions are tail-recursive because ocaml allows mutually 
tail-recursive functions.

The functions factorial, power and fibonacci in the previous paragraph are
also tail-recursive. The power function is a special case, a kind of hybrid. First
you have to inline a2 because ocaml won't do it for you :

let rec power a n =
  if n = 0 then 1
  else if n = 1 then a
  else
    if n mod 2 = 0 then power (a * a) (n/2)
    else a * power (a * a) (n/2);;

The then branch (when n is even) is tail-recursive (will be compiled as a goto)
whereas the  else branch (when  n is  even)  is  not  (will  be compiled as  any
application).



1.19. Partial functions

Most functions must be total functions. A total function is a function that always
returns a result value. A partial functions is a function that may fail in a way or
another.  Wherever  possible  avoid  partial  functions  such  as  List.hd and
List.tl. Not every function can be total, so dealing with partial function is a
necessary evil. However when doing evil do it good. There are basically two
evil options. 

The first option is to assert a condition.
assert has two advantages :

• It can enforce a structural invariant that the static type system can't 
capture. That helps debugging.

• It has zero run-time cost because the -noassert compiler option 
removes them.

let rec factorial acc n =
  if n = 0 then acc
  else factorial (n * acc) (n - 1)

let factorial n =
  assert(n >= 0);
  factorial 1 n

The second option is to raise an exception. More on that later.

1.20. Fixpoint combinators

Due to OCaml being rooted in λ-calculus and bicartesian-closed-categories you
will eventually encounter programmer code that can be very hard to decipher
without  serious  background.  Here  is  one  such  wizardry.  zfix is  called  a
fixpoint combinator. It allows recursive applications in functions without rec :

let rec zfix f x = f (zfix f) x

let factorial fn n =
  if n = 0 then 1
  else n * fn (n - 1)
 
let factorial = zfix factorial (* zfix is partially applied here *)

let fibonacci fn a b n =
  if n < 2 then b
  else fn b (a + b) (n - 1)

let fibonacci = zfix fibonacci 1 1  (* zfix is over-applied here *)



Chapter 2.

Algebraic datatypes

2.1. The float type 

A float literal is any number with a dot (eventually followed by an exponent 
part).

# 2.21e9;;
- : float = 221000000.

Except ** all float infix operators (+. -. *. /.) are terminated by a dot.
You can use the ** power operator to compute any number root :

# 27. ** (1. /. 3.);;
- : float = 3.

The negation float prefix operator is ~-.
# (~-.);;
- : float -> float = <fun>

2.2. Limited float precision 

# 42.456 -. 42.;;
- : float = 0.45600000000000307

You are kidding me, it should be just  0.456 isn't it ? OCaml has a bug. Well,
ocaml certainly has bugs but this is not one of them. It's just standard IEEE-754
floats, double precision. The typical solution to save the user mental sanity is to
castrate the precision by using the Printf.printf function :

# Printf.printf "%.4f\n" (42.456 -. 42.);;
0.4560
- : unit =()

2.3. The pair type 

A pair type is constructed using the * infix type operator : 



type complex = float * float;;

type is the keyword to declare a new user type.

A pair value is constructed using the comma infix value operator : 

# (1.,2.);;
- : float * float = (1., 2.)

The : colon operator is required to explicit a declared type such as complex :  

# (1.,2. : complex);;
- : complex = (1., 2.)

A pair type or a pair value can be heterogeneous :

# (1,true);;
- : int * bool = (1, true)

2.4. The tuple type

A tuple type is a generalized pair type and is constructed using multiple * infix 
type operators :

type vertex3D = float * float * float;;

A tuple value is constructed using multiple comma infix value operators : 

# (1.,2.,3. : vertex3D);;
- : vertex3D = (1., 2., 3.)

Just like a pair a tuple can also be heterogeneous. 

Pair and tuples types are sometimes called product-types.

2.5. Formal arguments filtering pairs or tuples

# let add_pair (a,b) = a + b;;
val add_pair : int * int -> int

# let add_triple (a,b,c) = a + b + c;;
val add_triple : int * int * int -> int

# let add_complex (xa,ya:complex) (xb,yb:complex) =
    (xa +. xb, ya +. yb : complex);;
val add_complex : complex -> complex -> complex = <fun>



2.6.  Let-in filtering pairs or  tuples

let fractional x =
  let (f,i) = modf x in f;;

2.7. Parenthesis elimination for  pairs or  tuples

As a let in declaration or as a final result value parenthesis are usually optional.

let fractional x =
  let f,i = modf x in f;;

let succ_pair (a,b) = a + 1, b + 1;;
let succ_triple (a,b,c) = a + 1, b + 1, c + 1;;

2.8. Tuple comparison

Tuples are compared (by  Stdlib.compare) in lexical order.  That means the
left-most value has precedence. If two left-most values are equal then the next
equal-rank values matter. That continues until the right-most values are reached.

# (1,9) < (2,5);;
- : bool = true
# (3,9,7) < (3,5,1);;
- : bool = false

2.9. The enumerated type

A new enumerated type is declared using the | infix operator separating 
multiple constructors : 

type day =
  | Monday
  | Tuesday
  | Wednesday
  | Thursday
  | Friday
  | Saturday
  | Sunday;;

Warning: a constructor first letter must be uppercase.

Enumerated types are sometimes called sum-types.

2.10. Enumerated type and comparison



type compared =
  | Less | Equal | More;;

According to the Stdlib.compare function, constructors are sorted from less to
more. That means Less < Equal < More holds.
And Monday < Tuesday < Wednesday < Thursday < Friday < Saturday
< Sunday also Holds.

2.11. Overriding a type

You can override a previously declared type by declaring it again as a user type.
Warning: don't override a common standard type, it could catch you.

type int = Int;;
1 + Int;;
Error: This expression has type int/1
       but an expression was expected of type int/2

2.12. The algebraic datatypes

Algebraic datatypes are the bread and butter of functional programming. An
algebraic datatype models a disjoint union set. Practically it is an enumeration
of (optional) tuples.

type poker_hand =
  | HighCard of int * int * int * int * int
  | OnePair of int * int * int * int
  | TwoPair of int * int * int
  | ThreeOfAKind of int
  | Straight of int
  | Flush of int * int * int * int * int
  | FullHouse of int * int
  | FourOfAKind of int
  | StraightFlush of int 

With the following card values :

# let ace,king,queen,jack = 50,40,30,20;;
val ace : int = 50
val king : int = 40
val queen : int = 30
val jack : int = 20 

Tuples values are from the strongest card value to the weakest card value.
Now a poker hand can be compared to another poker hand : 



HighCard(king,queen,jack,10,7) > 
HighCard(king,queen,jack,10,5);;
-: bool = true
OnePair(queen,king,jack,10) > OnePair(queen,king,jack,7);;
-: bool = true
FullHouse(queen,jack) > FullHouse(queen,10);;
-: bool = true
StraightFlush(8) > StraightFlush(6);; 
-: bool = true 

2.13. Recursive algebraic datatypes

Recursive types are allowed. You can use a type inside its own definition.
Doing that we can declare the type of arithmetic expressions :

type arithmetic =
  | Int of int
  | Neg of arithmetic
  | Add of arithmetic * arithmetic
  | Sub of arithmetic * arithmetic
  | Mul of arithmetic * arithmetic
  | Div of arithmetic * arithmetic
  ;;

Recursive algebraic datatypes are also named inductive types. Inductives types
play a central role in the semantic specification of linguistic-like components
such  as  math  expressions,  math  functions,  logics  and  programs.  Strangely
enough (on the opposite of functions), recursive types do not require the  rec
keyword. Actually there exist a  nonrec keyword to be used when you really
want to declare a non-recursive type.

2.14. Pattern matching an algebraic datatype using match

The datatype arithmetic can be deconstructed using a match ... with 
followed by a disjoint set of equations.

# let rec eval expr =
  match expr with
  | Int n -> n
  | Neg a -> - eval a
  | Add(a,b) -> eval a + eval b
  | Sub(a,b) -> eval a - eval b
  | Mul(a,b) -> eval a * eval b
  | Div(a,b) -> eval a / eval b
  ;;
val eval : arithmetic -> int = <fun> 



2.15. Understanding pattern matching

The canonical use of pattern matching is splitting an inductive value like expr 
into a disjoint set of equations.
Each equation has two sides, one left of the arrow and the resulting value right 
of the arrow.
The left side is a filter that introduces new variables to be used in the right side.
This filter is made of two kinds of identifiers :

• an identifier starting with an uppercase letter is a constructor name.
• an identifier starting with a lowercase letter is a fresh new variable 

bounded to any value at his position.
The underscore character is a wildcard that acts much like an anonymous 
variable.

2.16. Pattern matching an algebraic datatype using function

Actually we don't even use the expr variable in eval.
So we can use function instead of match. function can filter an anonymous 
variable. 

# let rec eval = function
  | Int n -> n
  | Neg a -> - eval a
  | Add(a,b) -> eval a + eval b
  | Sub(a,b) -> eval a - eval b
  | Mul(a,b) -> eval a * eval b
  | Div(a,b) -> eval a / eval b
  ;;
val eval : arithmetic -> int = <fun> 

2.17. The pattern matching expression rule

Just like there is a rule for conditional expressions, there is a rule for pattern 
matching expressions.
This pattern matching rule is : all the equation right-members must have the 
same type.

2.18. The pitfalls of pattern matching

One cool feature of pattern matching is that it's extended to constant literals.
Especially useful is character intervals that allow simple lexing functions.

# let alpha = function
    | 'a'..'z' -> true



    | 'A'..'Z' -> true
    |  c -> false;;
val alpha : char -> bool = <fun>

On the opposite a literal integer can be a bad idea. 

# let rec factorial = function
    | n -> n * factorial (n - 1)
    | 0 -> 1;; 
Warning 11: this match case is unused.

That Warning 11 is because equations are ordered. First pattern is tested firstly,
second pattern is tested secondly, and so on. Hence the new variable n bounds
to any integer and the zero case is never reached. Pattern matching is overkill
when you just need an integer conditional. The canonical factorial instead is
conditional :  

# let rec factorial n =
    if n = 0 then 1 else n * factorial (n - 1);;

Another pitfall of pattern matching is the double use of the same new variable 
supposedly enforcing an equality constraint. 

# let rec binomial = function 
    | n,0 -> 1
    | n,n -> 1
    | n,p -> binomial (n-1,p) + binomial (n-1,p-1);;
Error: Variable n is bound several times in this matching

The n,n pattern does not mean two equal values, instead it means two different
variables with the same identifier. Again the safe canonical binomial is not a
pattern matching but a basic conditional :

# let rec binomial (n,p) =
    if p = 0 || n = p then 1
    else binomial (n-1,p) + binomial (n-1,p-1);;

Another common error in pattern matching is uncompleted equation set.

# let sign = function 
    | Less -> -1
    | More -> +1;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Equal

You just forgot what if the Equal constructor applies.



Don't worry you will get a Warning 8 each time a pattern matching is not 
exhaustive.

2.19. A formal function deriver

Using a simple inductive type we can declare the type of →  functions :ℝ ℝ

type function_x = 
  | X          (* the x variable *)
  | R of float (* a real number  *)
  | Sin of function_x
  | Cos of function_x
  | Tan of function_x
  | Log of function_x
  | Exp of function_x
  | Power of function_x * float
  | Add of function_x * function_x
  | Mul of function_x * function_x
  ;;

More →  functions can be defined using only ℝ ℝ function_x.
Sub(a,b) is much like Add(a,Mul(R(-1),b)).
Div(a,b) is much like Mul(a,Power(b,-1)).
So we don't need Sub and Div because we want a disjoint union.

Let's introduce two utility functions that factorize constant multiplicand :

let factor = function
  | R(1.),u -> u
  | u,v -> Mul(u,v)

let product = function
  | R(a),Mul(R(b),u) -> factor(R(a*.b),u)
  | Mul(R(a),u),R(b) -> factor(R(a*.b),u)
  | Mul(R(a),u),Mul(R(b),v) -> factor(R(a*.b),Mul(u,v))
  | u,Mul(R(k),v) -> Mul(R(k),Mul(u,v))
  | Mul(R(k),u),v -> Mul(R(k),Mul(u,v))
  | u,v -> factor(u,v)
  ;;

Now the formal derivation of →  functions :   ℝ ℝ

let rec derive = function
  | X -> R(1.)
  | R(k) -> R(0.)
  | Add(u,R(k)) -> derive(u)
  | Add(u,v)    -> Add(derive(u),derive(v))
  | Mul(R(k),X) -> R(k)



  | Mul(R(k),u) -> product(R(k),derive(u))
  | Mul(u,v) -> Add(product(derive(u),v),product(u,derive(v)))
  | Sin(u) -> product(derive(u),Cos(u))
  | Cos(u) -> product(R(-1.),product(derive(u),Sin(u)))
  | Tan(u) -> product(derive(u),Power(Cos(u),-2.))
  | Log(u) -> product(derive(u),Power(u,-1.))
  | Exp(u) -> product(derive(u),Exp(u))
  | Power(u,2.) -> product(R(2.),product(derive(u),u))
  | Power(u,a) -> product(R(a),product(derive(u),Power(u,a-.1.)))
  ;;

Let's play with it.
The derivation of  (2x)½ is (2x)-½.

# derive(Power(Mul(R(2.),X),0.5));;
- : function_x = Power (Mul (R 2., X), -0.5)

And the derivation of 3cos² (x²-1) is -12x.sin(x²-1).cos(x²-1).

# derive(Mul(R(3.),Power(Cos(Add(Power(X,2.),R(-1.))),2.)));;
- : function_x =
Mul (R (-12.),
 Mul (Mul (X, Sin (Add (Power (X, 2.), R (-1.)))),
  Cos (Add (Power (X, 2.), R (-1.)))))

2.20. Nested pattern matching

Most languages in the ML family have a companion theorem prover. OCaml is
no exception.  Coq is  OCaml's  companion theorem prover.  One little  syntax
departure Coq has is the  match...with...end pattern matching. Coq pattern
matching is scoped and we will now see why this is a good decision.

type lexpr =
  (* lisp code *)
  | Var of int
  | Abs of lexpr
  | App of lexpr * lexpr
  | Let of lexpr * lexpr
  (* lisp values *)
  | Fun of (lexpr -> lexpr)
  | Int of int

let rec eval expr env =
  match expr with
  | Var n       -> List.nth env n
  | Abs body    -> Fun (fun x -> eval body (x::env))
  | App (f,arg) ->
      match eval f env with
      | Fun f -> f (eval arg env)



      | _ -> invalid_arg "Can't apply, not a function"
  | Let (e,body) -> eval body (eval e env::env)
  | _ -> expr

This  codes  raises  3  warnings.  This  is  because  ocaml  don't  read  the  code
indentation. OCaml can't tell our nested match must be properly scoped like
that :   

      ( match eval f env with
      | Fun f -> f (eval arg env)
      | _ -> invalid_arg "Can't apply, not a function" )

Once the nested match is correctly parenthesized our code is the sketch of a
minimalist lisp-like interpreter.

2.21. Dealing with partial functions using the result type

Our formal derivation is a total function. 
But our evaluator for arithmetic is a partial function :

# eval(Div(Int 1, Int 0));;
Exception: Division_by_zero.

Can we make it a total function ? The answer is yes we can.
First we introduce 3 utility functions :

let ok1 v f =
  match v with
  | Ok x -> Ok (f x)
  | Error _ -> v

let ok2 v1 v2 f =
  match v1,v2 with
  | Ok x1,Ok x2 -> Ok (f x1 x2) 
  | Error _, _ -> v1
  | _, Error _ -> v2

let result2 v1 v2 f =
  match v1,v2 with
  | Ok x1,Ok x2 -> f x1 x2 
  | Error _, _ -> v1
  | _, Error _ -> v2
  ;;

Now we use these utilities to propagate the error until we obtain a total function
:



# let rec eval = function
  | Int n ->
     Ok n
  | Neg a ->
     ok1 (eval a) (~-)
  | Add(a,b) ->
     ok2 (eval a) (eval b) (+)
  | Sub(a,b) ->
     ok2 (eval a) (eval b) (-)
  | Mul(a,b) ->
     ok2 (eval a) (eval b) ( * )
  | Div(a,b) ->
     result2
     (eval a) (eval b)
     (fun a b -> if b=0 then Error Division_by_zero else Ok 
(a/b))
  ;;
val eval : arithmetic -> (int, exn) result = <fun>

2.22. Mutually recursive datatypes

Just like let rec … and …  allows mutual recursive values, type … and … 
allows mutually recursive types.

type tree =
  | Node of int * forest
and forest = 
  | Leaf of int 
  | Forest of tree * forest



Chapter 3.

Module as namespaces

3.1. Component granularity

We know types. We know functions that manipulates types. Functions and types
must be tied together, that's what is called component programming. In Object-
Oriented-Programming the basic component is the class. Because classes are
too fine-grain, in OCaml the basic component is the module.

3.2. Module components

Now how do we tie function_x type and derive function ?
Of course we want both a white-box version and a black-box version.
The black-box is what the component user sees, the white-box is actual code.
The black-box version will only export a  type t and the  derive : t -> t
function. The white-box version will have all this plus our factor and product
utility functions.  OCaml has several possibilities to achieve this  but we will
only  present  one.  One  possibility  is  to  put  all  code  in  one  single  file
FormalDerivationX.ml : 

module type Type =
sig
type t = 
  | X           (* the x variable *)
  | R of float  (* a real number  *)
  | Sin of t
  | Cos of t
  | Tan of t
  | Log of t
  | Exp of t
  | Power of t * float
  | Add of t * t
  | Mul of t * t
  val derive : t -> t
end

module Data : Type =
struct
  type t = ...
  let factor = ... 



  let product = ... 
  let rec derive = ... 
end

The source file can be read in the REPL by the #use_mod directive :

#mod_use "FormalDerivationX.ml";;

But  now  t becomes  FormalDerivationX.Data.t and  derive becomes
FormalDerivationX.Data.derive. Don't be afraid of very long names. Long
names makes things unique. Long names are not the plague, long names are the
cure. Moreover long names are easy to shorten. The rest of this chapter is about
the many ways ocaml offers you to shorten long names.

3.3. Opened modules

There are two options for opening a module, the gentle and the extreme.

The gentle is open FormalDerivationX
Now t becomes Data.t and derive becomes Data.derive. Quite reasonable.

The extreme is open FormalDerivationX.Data
Now t is t and derive is derive. Can't be simpler.
Probably even too simple, you may want the global namespace to be as clean as
possible.
One solution is a locally opened module.

# let open FormalDerivationX.Data in
  derive(Mul(R(3.),Power(Cos(Add(Power(X,2.),R(-1.))),2.)));;
- : FormalDerivationX.Data.t =
...

Or even shorter :

# FormalDerivationX.Data.
(derive(Mul(R(3.),Power(Cos(Add(Power(X,2.),R(-1.))),2.))));;
- : FormalDerivationX.Data.t =
...

3.4. Module aliasing

Another popular usage is module aliasing. Module aliasing is tailor-made to
bring long names and short identifiers together.

module FX = FormalDerivationX.Data;;



See how the formal derivation of 3cos² (x²-1) is still quite terse.

# FX.derive(FX.Mul(FX.R(3.),FX.Power(FX.Cos(FX.Add(FX.Power(FX.X,2.),FX.R(-1.))),2.)));;
- : FX.t =
FX.Mul (FX.R (-12.),
 FX.Mul (FX.Mul (FX.X, FX.Sin (FX.Add (FX.Power (FX.X, 2.), FX.R (-1.)))),
  FX.Cos (FX.Add (FX.Power (FX.X, 2.), FX.R (-1.)))))

3.5. Local modules

Another way to keep the global namespace clean is a local module.

# let module FX = FormalDerivationX.Data in
FX.derive(FX.Mul(FX.R(3.),FX.Power(FX.Cos(FX.Add(FX.Power(FX.X,2.),FX.R(-1.))),2.)));;
- : FormalDerivationX.Data.t =
...



Chapter 4.

Binary trees and the art of sorting

4.1. The passion trees

Trees attract functional programmers like magnets attract iron. A tree is much
like a list with multiple (at least two) tails. Often a functional tree is used as a
persistent replacement for an Abstract Data Type such as a priority queue, a
dynamic array, a stack, a binary-heap and so on.

4.2. The binary tree inductive type

One of the most fruitful inductive type is the binary tree. The binary tree is
either  Empty or a  Fork with a recursive left branch, an item, and a recursive
right branch. We declare it with  int as the item type, so that our algorithmic
approach is not cluttered up with domain values and operations.

type t =
   | Empty
   | Fork of t * int * t

Depending on it's final role, a binary tree type exports the empty,  singleton,
add,  member,  remove,  union values and operations, or a subset or a superset.
One fundamental thing to remember is that two items can be compared. In some
ways we are reinventing the art of sorting but the functional way. Please don't
skip this chapter if you have good knowledge of imperative sorting because it's
a whole different world. At the moment the only thing we can do is to code the
empty and the singleton n values.

let empty =
   Empty

let is_empty t =
   t = Empty

let singleton n =
   Fork(Empty,n,Empty)

The binary tree code often uses conventional variable names.
• l is the left branch



• r is the right branch
• m, n are elements / items
• la is the left branch of the ta tree
• na is the element / item of the ta tree 
• ra is the right branch of the ta tree
• lb is the left branch of the tb tree
• nb is the element / item of the tb tree 
• rb is the right branch of the tb tree
• i is an index natural number
• acc is an accumulator
• f is a function

A good binary tree is balanced. Unbalanced binary trees perform bad. While
there is no definitive function to test a binary tree balance, there is a measure
known as  the  Strahler  number.  The Strahler  number  gives  the  depth  of  the
biggest complete binary tree embedded in a particular binary tree.

let rec strahler = function
  | Empty -> 0
  | Fork(l,n,r) ->
      let sl = strahler l and sr = strahler r in
      if sl = sr then sl+1 else max sl sr

4.3. The binary search tree set, the member & add operations

The invariant of a binary search tree is that everything in the left  branch is
strictly lesser than the item, and everything in the right branch is strictly greater
than the item. That suffices to code the member n operation : if the tree is empty
then return false, otherwise if n is lesser than the item then recursively explore
the left branch, if  n is greater than the item then recursively explore the right
branch, else n is equal to the item then return true. 

let rec member n = function
   | Empty -> false
   | Fork(l,m,r) ->
       if n < m then member n l
       else if n > m then member n r
       else true

That also suffices to code the add n operation : if the tree is empty then return 
singleton n, otherwise if n is lesser than the item then recursively add n in 
the left branch, if n is greater than the item then recursively add n in the right 
branch, else n is equal to the item then return the initial tree. 



let rec add n t =
   match t with
   | Empty -> singleton n
   | Fork(l,m,r) ->
       if n < m then Fork(add n l,m,r) 
       else if n > m then Fork(l,m,add n r)
       else t

Remark that the t tree as the last argument allows us to pipe the set operations :

let my_set =
  singleton 11
  |> add 7 |> add 4  |> add 14 |> add 9  |> add 12 |> add 6  |> add 1
  |> add 8 |> add 13 |> add 3  |> add 16 |> add 10 |> add 15 |> add 18
  ;;

4.4. The binary search tree set, the remove operation

The remove operation first mimics the add operation : if the tree is empty then
return Empty, otherwise if n is lesser than the item then recursively remove n in
the left branch, if  n is greater than the item then recursively  remove n in the
right branch. Else n is equal to the item then concat the left and right branches
together. 

let rec remove n = function
  | Empty -> Empty
  | Fork(l,m,r) ->
      if n < m then Fork(remove n l,m,r) 
      else if n > m then Fork(l,m,remove n r)
      else concat l r

What is this unknown concat ta tb operation ? What does it do ?  concat is a
new constructor. First concat needs all elements in ta to be strictly lesser than



all elements in tb. Second concat does very little if one tree is empty. Third if
both ta and tb aren't empty they are merged :

• ta is preserved as the left branch
• the minimum element of tb is promoted as the root element
• tb is deprived of it's minimum element and becomes the new right 

branch

let concat ta tb =
  match ta,tb with
  | _,Empty -> ta
  | Empty,_ -> tb
  | _,Fork(lb,nb,rb) ->
      Fork(ta,minimum nb lb,remove_minimum lb nb rb)

Finding the minimum element is just iterating along the left spine :

let rec minimum acc = function
  | Empty -> acc
  | Fork(l,n,r) -> minimum n l

Removing the minimum element is recursive style following the left spine :

let rec remove_minimum la na ra =
  match la with
  | Empty -> ra
  | Fork(lb,nb,rb) -> Fork(remove_minimum lb nb rb,na,ra)

Remark that the actual source code must declare these operations in the reverse
order, first introduce  minimum and  remove_minimum, then  concat then finally
remove.

In our example, to remove 11 is just the same thing as to concat 7 14.



4.5. The binary search tree set, the union operation

Now we want the set union operation.

Before coding union we need the  split n deconstructor that separates a set
into a less than n set and a more than n set. As an accessory split also serves
as a membership operation, we will need that later. The split n deconstructor
structurally  recurses  on  left  or  right  branch  depending  on  how the  element
compares to n.

let rec split n = function
  | Empty -> Empty,false,Empty
  | Fork(l,m,r) ->
      if n < m then 
        let la,present,ra = split n l in la,present,Fork(ra,m,r)
      else if n > m then
        let lb,present,rb = split n r in Fork(l,m,lb),present,rb
      else l,true,r

split 8 my_set;;

The union operation deconstructs tb using split na tb and then Fork 
reconstructs by structural recursion on both left and right branches.

let rec union ta tb =
  match ta,tb with
  | _,Empty -> ta
  | Empty,_ -> tb
  | Fork(la,na,ra),_ -> 
      let lb,_,rb = split na tb
      in Fork(union la lb,na,union ra rb)

4.6. The binary search tree set, more set operations

Now we want the set cardinal and the remaining set operations.



The cardinal operation is easy to write recursively :

let rec cardinal = function
   | Empty -> 0
   | Fork(l,_,r) -> cardinal l + 1 + cardinal r

However there is a less obvious alternative that is more iterative. Let's 
accumulate all along the entire binary tree :

let rec cardinal acc = function
   | Empty -> acc
   | Fork(l,_,r) -> cardinal (cardinal acc r + 1) l
let cardinal =
   cardinal 0

That seems contrived at first but it can greatly enhance the performance of 
serializing operations.

The intersection and difference operations  first deconstruct using split 
na tb and then, depending on the membership result, Fork or concat 
reconstruct by structural recursion on both left and right branches.

let rec intersection ta tb =
  match ta,tb with
  | _,Empty | Empty,_ -> Empty
  | Fork(la,na,ra),_ ->
      let lb,present,rb = split na tb in
      if present then Fork(intersection la lb,na,intersection ra rb)
      else concat (intersection la lb) (intersection ra rb)

let rec difference ta tb =
  match ta,tb with
  | _,Empty -> ta
  | Empty,_ -> Empty
  | Fork(la,na,ra),_ -> 
      let lb,present,rb = split na tb in
      if present then concat (difference la lb) (difference ra rb)
      else Fork(difference la lb,na,difference ra rb)

The disjoint predicate first deconstructs using split na tb and then, 
depending on the membership result, returns false or structurally recurses  on 
both left and right branches.

let rec disjoint ta tb =
  match ta,tb with
  | _,Empty | Empty,_ -> true
  | Fork(la,na,ra),_ -> 
      let lb,present,rb = split na tb in



      if present then false
      else disjoint la lb && disjoint ra rb

The subset predicate structurally recurses if na = nb otherwise it recurses on 
carefully chosen parts. 

let rec subset ta tb =
  match ta,tb with
  | Empty,_ -> true
  | _,Empty -> false
  | Fork(la,na,ra),Fork(lb,nb,rb) -> 
      if na < nb then
         subset (Fork(la,na,Empty)) lb && subset ra tb
      else if na > nb then
         subset (Fork(Empty,na,ra)) rb && subset la tb
      else
         subset la lb && subset ra rb

Set equality is reciprocal inclusion : 

let equal ta tb =
  subset ta tb && subset tb ta

4.7. The binary search tree set, the filter operation

Now we want to filter a set according to a cond predicate.
We deconstruct using function and, depending on cond n, we Fork or concat
reconstruct by structural recursion on both left and right branches.

let rec filter cond = function 
   | Empty -> Empty
   | Fork(l,n,r) ->
       if cond n then Fork(filter cond l,n,filter cond r)
       else concat (filter cond l) (filter cond r)

4.8. The binary search tree set, the interval operation

Now we want to extract the subset delimited by the [low,high] interval. We
recurse on the left branch or the right branch or both depending on how the
element compares to the limits. 

let rec interval low high = function
   | Empty -> Empty
   | Fork(l,n,r) ->
       if high < n then interval low high l
       else if low > n then interval low high r
       else Fork(interval low high l,n,interval low high r)



4.9. The binary search tree set, the to_list operation

Here the connection between binary tree & sorting becomes more obvious as 
we convert the binary tree to a sorted list. This is straightforward recursively :

let rec to_list = function
   | Empty -> []
   | Fork(l,n,r) -> to_list l @ [n] @ to_list r 

However this structurally recursive version is too slow and memory hungry so 
we rather adopt the iterative style already used for the cardinal operation. 

let rec to_list acc = function
   | Empty -> acc
   | Fork(l,n,r) -> to_list (n::to_list acc r) l
let to_list =
   to_list []

4.10. The binary search tree set, conclusion

If the binary search tree is balanced enough then the performance is quite good,
that is about O (log cardinal) amortized case for the most basic operations. An
imperative hash-table does dictionary operations in about amortized O (1). We
have  seen  however  that  a  binary  search  tree  can  do  much  more  than  only
dictionary operations. Moreover many variants (like Splay tree, AVL tree, Red-
Black  tree)  do  faster  dictionary  operations  than  vanilla  binary  search  tree
without compromising set operations.

4.11. The Braun tree
The Braun tree is a binary tree popularized by Chris Okasaki. The invariant of a
Braun tree is that every left branch has at most one more item than the right
branch. Because a Braun tree looks much like a complete binary tree, the path
from the  root  to  a  leave  is  guaranteed  to  have  minimal  length  which  is  an
excellent performance testimony.

Now we want the Braun tree size. And we want it faster than enumerating all 
items.
The code is from the paper Three Algorithms on Braun Trees by Chris Okasaki.

let rec diff n = function
  | Empty -> if n = 0 then 0 else assert false
  | Fork(l,_,r) ->
      if n = 0 then 1
      else if n mod 2 = 1 then diff ((n - 1) / 2) l
      else diff ((n - 2) / 2) r



let rec size = function
  | Empty -> 0
  | Fork(l,_,r) -> let m = size r in 2 * m + 1 + diff m l

This function computes in O (log² size).

4.12. The Braun stack, the add operation

A Braun tree can implement a Braun stack. The insertion of a new item in a
Braun stack uses a unique scheme : the left branch and the right branch are
swapped with the new item being recursively inserted in the left branch.

let rec add n = function
  | Empty -> singleton n
  | Fork(l,m,r) -> Fork(add m r,n,l)

let my_Braun_stack =
  singleton 11
  |> add 7 |> add 4  |> add 14 |> add 9  |> add 12 |> add 6  |> add 1
  |> add 8 |> add 13 |> add 3  |> add 16 |> add 10 |> add 15 |> add 18
  ;;

4.13. The Braun stack, the member operation

Now we want to know the last added item or any older item.
The last item will be member 0, the last but 1 will be member 1, and so on ...

let rec member i = function 
  | Empty -> invalid_arg "BraunStack.member"
  | Fork(l,n,r) ->
      if i = 0 then n else
      if i land 1 = 1 then member (i / 2) l
      else member (i / 2 - 1) r

The path from root to an item is encoded in its index number. First  i + 1 is
converted to base 2, then, from the less significant bit to the most significant
bit, each 0 digit means go left and each 1 digit means go right.  



4.14. The Braun stack, the remove operation

Now we want to remove the last added item.

let remove = function
  | Empty -> invalid_arg "BraunStack.remove"
  | Fork(l,_,r) -> concat l r

What is this unknown concat ta tb operation ? What does it do ?  concat is a
new constructor. First concat needs the Braun tree ta to have at most one more
item than the Braun tree  tb. Second  concat does very little if  ta is  empty.
Third if ta is not empty then ta and tb are merged :

• tb becomes new the left branch
• concat l r becomes the new right branch

let rec concat ta tb =
  match ta with
  | Empty -> Empty
  | Fork(l,n,r) -> Fork(tb,n,concat l r)

4.15. The Braun stack, the replace operation

The replace i x operation binds the member i item to the value x.

let rec replace i x = function 
  | Empty -> invalid_arg "BraunStack.replace"
  | Fork(l,y,r) ->
      if i = 0 then Fork(l,x,r) else
      if i land 1 = 1 then Fork(replace (i / 2) x l,y,r)
      else Fork(l,y,replace (i / 2 - 1) x r)

4.16. The Braun min heap, the add operation



A Braun tree can also implement a Braun heap. We choose a min-heap rather 
than a max-heap. The invariant of a min-heap is that the root item is lesser than 
any item in its branches.

The left  branch and the  right  branch are swapped with the new item being
recursively inserted in the left branch or becoming the new root item depending
on the comparison.

let rec add n = function
  | Empty -> singleton n
  | Fork(l,m,r) ->
      if n < m then Fork(add m r,n,l)
      else Fork(add n r,m,l)

let my_Braun_min_heap =
  singleton 11
  |> add 7 |> add 4  |> add 14 |> add 9  |> add 12 |> add 6  |> add 1
  |> add 8 |> add 13 |> add 3  |> add 16 |> add 10 |> add 15 |> add 18
  ;;

4.17. The Braun min heap, the member operation

Now we want to retrieve the least item of the heap. It just seats at the tree root.

let member = function
  | Empty -> invalid_arg "BraunHeap.Data.member"
  | Fork(_,n,_) -> n

4.18. The Braun min heap, the replace operation

Now we want to remove the minimum/root item and add a new item n in a 
single operation.
let rec replace n = function
  | Empty -> invalid_arg "BraunHeap.replace"
  | Fork((Fork(_,m,_) as l),_,Empty)
      when m < n ->



      Fork(replace n l,m,Empty)
  | Fork((Fork(_,na,_) as l),_,(Fork(_,nb,_) as r))
      when na < n || nb < n ->
      if na < nb
      then Fork(replace n l,na,r)
      else Fork(l,nb,replace n r)
  | Fork(l,_,r) -> Fork(l,n,r)

4.19. The Braun min heap, the remove operation

Now we want to only remove the minimum/root item.

let rec remove = function
  | Empty -> invalid_arg "BraunHeap.remove"
  | Fork(t,_,Empty) -> t
  | Fork(Empty,_,_) -> assert false
  | Fork((Fork (_,na,_) as l),(Fork( _,nb,_) as r)) ->
      if na < nb
      then Fork(r,na,remove l)
      else Fork(replace na r,nb,remove l)

4.20. The heap sort operation

We are not done yet with sorting.
Once you have a min-or-max heap your can sort its items using to_list.

(* heap to sorted list *)
let rec to_list t =
  if is_empty t then []
  else member t :: to_list (remove t)  

4.21. The retrace max heap, the add operation

Now we want a max-heap that preserves its history. The invariant of a max-
heap is that the root item is greater than any item in its branches.

let rec add n t =
  match t with
  | Empty -> singleton n
  | Fork(_,m,_) when n > m -> Fork(t,n,Empty)
  | Fork(l,m,Empty) -> Fork(l,m,singleton n)
  | Fork(l,m,(Fork(_,k,_) as r)) when k > n ->
      Fork(l,m,add n r)
  | Fork(l,m,r) -> Fork(l,m,Fork(r,n,Empty))

let my_retrace_max_heap =
  singleton 11
  |> add 7 |> add 4  |> add 14 |> add 9  |> add 12 |> add 6  |> add 1



  |> add 8 |> add 13 |> add 3  |> add 16 |> add 10 |> add 15 |> add 18
  ;;

4.22. The retrace max heap, the member operation

Now we want to retrieve the greatest item of the heap. It just seats at the tree 
root.

let member = function
  | Empty -> invalid_arg "RetraceHeap.member"
  | Fork(_,n,_) -> n

4.23. The retrace max heap, the remove operation

Now we want to remove the maximum/root item.
If the left branch is empty then we return the right branch and if the right branch
is  empty then  we  return  the  left  branch.  Otherwise  we  recursively  Fork
reconstruct depending on the comparison of na and nb.

let rec remove = function
  | Empty -> invalid_arg "RetraceHeap.remove"
  | Fork(Empty,n,Empty) -> Empty
  | Fork(l,n,Empty) -> l
  | Fork(Empty,n,r) -> r
  | Fork((Fork(la,na,ra) as l),n,(Fork(lb,nb,rb) as r)) ->
      if nb > na then
        let ll = remove (Fork(l,n,lb))
        in  Fork(ll,nb,rb)
      else 
        let rr = remove (Fork(ra,n,r))
        in  Fork(la,na,rr)

4.24. The retrace max heap, the retrace operation

Now we want to recover the history of add operations. We already know this 
code, it's just binary tree linearization.

let rec retrace acc = function
   | Empty -> acc
   | Fork(l,n,r) -> to_list (n::retrace acc r) l
let retrace =
   retrace []

4.25. The retrace max heap, the to_list operation

Now suppose we have a max-heap and yet still want items to be sorted in 
increasing order.



An iterative version of the heap sort allows us to do that.

(* iterative heap to sorted list *)
let rec to_list acc t =
  if is_empty t then acc
  else to_list (member t :: acc) (remove t)
let to_list =
  to_list []

The same applies if we want a min-heap sorted in decreasing order.

4.26. The binary tree, conclusion

We have seen the type t = Empty | Fork of t * int * t being enriched
enough to implement many different abstract data types. More importantly we
have seen the binary tree to be the advocated way to sort data. Sorting data is
even more  important  than  you think.  Appropriately  sorted  data  is  often  the
prime avenue to optimal performance. 

4.27. The binary tree as a graph data type

Instead of implementing more heaps  (Skew-heap and Leftist-heap would be
good candidates)  we totally  change direction  and implement  directed  graph
(whom vertices are labeled with int) in an unexpected way.

Let's begin with the streamlined module interface. 

module DirectedGraph
   :
sig
   type t
   val empty : t
   val add : int -> int -> t -> t
   val member : int -> int -> t -> bool
   val successors : int -> t -> int list
   val predecessors : int -> t -> int list
   val subgraph : t -> t -> bool
   val equal : t -> t -> bool
end
   =
struct (* ... *)

4.28. The directed graph, the new type t

It is just another binary tree where the edge's source and destination are stored 
at the nodes.



type t =
   | Empty
   | Fork of t * int * int * t
   
let empty =
   Empty

4.29. The directed graph, the add operation

The edges (x,y) are added one by one starting from the empty graph.
The x and y alternate roles. At first x is the source vertex and y is the 
destination vertex. However they will be swapped at each step down.
add x y g constructs a new graph depending on the comparison of x and u :

• if the g graph is empty then return a singleton
• else if x is less than u then the edge (y,x) is added to the left branch  
• else if x is greater than u then the edge (y,x) is added to the right branch
• otherwise x = u
• if also y = v then the edge is already in the graph g
• otherwise the edge (y,x) is added to the right branch

(* add an edge (x,y) to the graph *)
let rec add x y = function
   | Empty -> Fork(Empty,x,y,Empty)
   | Fork (l,u,v,r) as g ->
      if x < u then Fork (add y x l,u,v,r)
      else if x > u then Fork (l,u,v,add y x r)
      else if y = v then g
      else Fork (l,u,v,add y x r)

let my_directed_graph =
  empty 
  |> add 6 3 |> add 2 4 |> add 1 2 |> add 8 5 |> add 1 3
  |> add 4 6 |> add 2 3 |> add 7 8 |> add 2 5 |> add 7 1
  |> add 4 8 |> add 3 5 |> add 6 7 |> add 3 7
  ;;



4.30. The directed graph, the member operation

As usual, the membership predicate follows the same scheme as insertion, but a
bool is returned instead.

• if the graph is empty then return false
• if x is less than u then the edge (y,x) is to be found in the left branch  
• if x is greater than u then the edge (y,x) is to be found in the right branch
• otherwise x = u
• if also y = v then return true
• otherwise the edge (y,x) is to be found in the right branch

   
(* is the edge (x,y) in the graph ? *)
let rec member x y = function 
   | Empty -> false
   | Fork (l,u,v,r) ->
      if x < u then member y x l
      else if x > u then member y x r
      else if y = v then true
      else member y x r

4.31. The directed graph, the successors & predecessors operations

We have first to deal with the non-discriminating levels. Once again there is the
recursive style and the iterative style.

(* recursive version *)
(* deal with the non-discriminating levels *)
let apply f w = function
  | Empty -> []
  | Fork (l,u,v,r) ->
      f w r @ (if w = v then [u] else []) @ f w r

(* iterative version *)
(* deal with the non-discriminating levels *)
let apply f w acc = function
   | Empty -> acc
   | Fork (l,u,v,r) ->
       f w (f w (if w = v then u::acc else acc) r) l

We use the apply iterative version. Now we deal with the discriminating levels.

(* deal with the discriminating levels *)
let rec loop x acc = function    
  | Empty -> acc
  | Fork (l,u,v,r) ->
      if x < u then apply loop x acc l
      else if x > u then apply loop x acc r



      else v::apply loop x acc r

Now the main difference between successors and predecessors is whether 
we start with the discriminating levels or the non-discriminating ones. 

(* successors & predecessors *)
let successors x =
  loop x []
let predecessors y =
  apply loop y []

4.32. The directed graph, the subgraph & equality operations

With the help of the member predicate the local mutually recursive functions 
sub1 and sub2 close the deal.

(* is ga a subgraph of gb ? *)                           
let subgraph ga gb =
   let rec sub1 = function
      | Empty -> true
      | Fork (l,u,v,r) -> member u v gb && sub2 l && sub2 r
   and sub2 = function
      | Empty -> true
      | Fork (l,u,v,r) -> member v u gb && sub1 l && sub1 r
   in sub1 ga

Graph equality is reciprocal inclusion : 

(* graph equality *)
let equal ga gb =
   subgraph ga gb && subgraph gb ga

4.33. The ternary search tree set

A ternary tree is much like a list with three tails. It uses lexicographical order,
that means it is used to store lists and sequences. Much like a binary tree it has a
less branch and a more branch, the new branch is the equal branch.

Let's begin with the module interface :

module TernarySearchTree
   :
sig
   type t
   val empty : t
   val add :    string -> t -> t
   val member : string -> t -> bool



   val remove : string -> t -> t
   val prefix : string -> t -> t
   val to_list : t -> string list
end
   =
struct (*...*)

The variable name conventions are :
• lt is the less than branch
• eq is the equal branch
• gt is the greater than branch
• s is a string
• i is an index number

4.34. The ternary search tree set, the new type t

A ternary search tree is much similar to a binary search tree except now we 
have 3 branches. We will use it to store char sequences, that is strings.

type t =
  | End
  | Path of char * t * t * t
  | Item of char * t * t * t
   
let empty =
  End

• the End constructor means a string end
• the Path constructor means a discriminating char
• the Item constructor means a string member of the set

4.35. The ternary search tree, the member operation

We begin with the member operation because it is somewhat simpler than the 
add operation.

let rec member s i = function
  | End -> false
  | Path (c,lt,eq,gt) ->
      if s.[i] < c then member s i lt
      else if s.[i] > c then member s i gt 
      else member s (i+1) eq
  | Item (c,lt,eq,gt) ->
      if s.[i] < c then member s i lt
      else if s.[i] > c then member s i gt 
      else if i + 1 = String.length s then true



      else member s (i+1) eq

let member s =
  member s 0

4.36. The ternary search tree, the add operation

The add operation borrows much code and structure from the member operation 
plus it inserts the needed constructors.

let rec add s i = function
  | End -> 
      if i + 1 = String.length s then
        Item (s.[i],End,End,End)
      else 
        Path (s.[i],End,add s (i+1) End,End)
  | Path (c,lt,eq,gt) ->
      if s.[i] < c then Path (c,add s i lt,eq,gt) 
      else if s.[i] > c then Path (c,lt,eq,add s i gt)
      else if i + 1 = String.length s then Item (c,lt,eq,gt)
      else Path (c,lt,add s (i+1) eq,gt)
  | Item (c,lt,eq,gt) as t ->
      if s.[i] < c then Item (c,add s i lt,eq,gt) 
      else if s.[i] > c then Item (c,lt,eq,add s i gt)
      else if i + 1 = String.length s then t
      else Item (c,lt,add s (i+1) eq,gt)

let add s =
  add s 0

let my_ternary_search_tree =
  empty
  |> add "January" |> add "February" |> add "March"
  |> add "April" |> add "May" |> add "June" |> add "July"
  |> add "August" |> add "September" |> add "October"
  |> add "November" |> add "December"
  ;;

4.37. The ternary search tree, the remove operation

The remove operation borrows much code and structure from the add operation.

let rec remove s i = function
  | End -> 
      invalid_arg "TernarySearchTree.remove"
  | Path (c,lt,eq,gt) ->
      if s.[i] < c then Path (c,remove s i lt,eq,gt) 
      else if s.[i] > c then Path (c,lt,eq,remove s i gt)
      else Path (c,lt,remove s (i+1) eq,gt)



  | Item (c,lt,eq,gt) ->
      if s.[i] < c then Item (c,remove s i lt,eq,gt) 
      else if s.[i] > c then Item (c,lt,eq,remove s i gt)
      else if i + 1 = String.length s then Path (c,lt,eq,gt)
      else Item (c,lt,remove s (i+1) eq,gt)

let remove s =
  remove s 0

4.38. The ternary search tree, the prefix operation

The prefix s function returns the internal sub-tree that contains all string 
beginning with s.

let rec prefix s i = function
  | End -> End
  | Path (c,lt,eq,gt) | Item (c,lt,eq,gt) ->
      if s.[i] < c then prefix s i lt
      else if s.[i] > c then prefix s i gt 
      else if i + 1 = String.length s then eq
      else prefix s (i+1) eq
let prefix s =
  prefix s 0

4.39. The ternary search tree, the to_list operation

The ternary search tree is clearly yet another sorted abstract data type. Hence
we can write a to_list function that returns a sorted list of char sequences. Of
course there are two styles, the recursive style and the iterative style.

let append s c =
  s ^ String.make 1 c

(* the recursive version *)
let rec to_list s = function
  | End -> []
  | Path (c,lt,eq,gt) ->
      to_list s lt @ to_list (append s c) eq @ to_list s gt
  | Item (c,lt,eq,gt) -> let asc = append s c in 
      to_list s lt @ [asc] @ to_list asc eq @ to_list s gt

let to_list = to_list ""

(* the iterative version *)
let rec to_list acc s = function
  | End -> acc
  | Path (c,lt,eq,gt) ->
      to_list (to_list (to_list acc s gt) (append s c) eq) s lt
  | Item (c,lt,eq,gt) -> let asc = append s c in 



      to_list (to_list (asc::to_list acc s gt) asc eq) s lt

let to_list = to_list [] ""



Chapter 5.

Certifying your code with Coq

5.1. This chapter is optional

Quality matters. However if you feel certification is overkill or too much 
demanding then you can jump directly to the chapter 6.

5.2. Why certify ?

Because the only alternative is rigorous unit tests. Whom of tests or certification
is a lesser pain is up to you to decide. 

5.3. How much certification can be trusted ?

Of course if the specifications are partial or inexact then the code can be as
well.  Otherwise the provided proofs  are  a  guaranty that  the code meets  the
specification. Testing becomes a thing of the past, the Jurassic world of trusted
components.

5.4. Is Coq for doing maths or for doing programming ?

You can do both maths and programming.
Of course it helps a lot if you have a math background (even modest) because
Coq is all about the type Prop. The type Prop is the type of propositions, that is
math properties,  whereas  the type  Set is  the type of  program data.  From a
programmer perspective Coq reuse many ocaml concepts and syntax. From a
math perspective coq has innovative features that drastically limit the number
of explicit parameters. Because maths are more implicit than programming, coq
has  to  reconcile  being  implicit  and  being  fully  formal.  Moreover,  because
formal proofs are much about try and fails, coq has to reconcile being fully
interactive and being error-inflexible. And Coq does a pretty good job at that.

5.5. coqtop

coqtop is the interactive command line interface.



  damien@user:~# coqtop
  Welcome to Coq 8.11.0 (March 2020)

  Coq <

coqtop is interactive and is good enough for small projects. The main coqtop
pitfall is that you can't redefine something which is quite annoying. Also Coq
has a pretty steep learning curve. Hence the first commands recommended to be
learned are :

• coqtop  because you have to start the session 
• Reset Initial. because you have to restart the session from scratch
• Restart.  because  you have to restart the proof from scratch
• Abort All.  because the proof may reveal to be more tricky than anticipated
• Admitted.  because the next proof may be easier than the current one
• Show Script. because you are lost in your own proof
• Quit.  because you are a genius or because you have to surrender

The proofs themselves are done using tactics on a kind of sequent calculus.
Sequent calculus is not something a programmer wants to study by a book or
documentation, it's more learning through practice. 

5.6. Coq modules as a namespace

Coq has modules just like ocaml. They are more limited but more interactive.
Coq interactivity is based on a keep-it-simple law : every sentence or command
must end with a dot.

5.7. The Operation module

We are  not  building  a  full  math  framework  with  a  Relation,  Operation,
Application module trilogy however a minimal  Operation module is a nice
commodity that will serve our first coq mini-project.

  Module Operation.

This opens the Operation module declaration.

  Section operations.

This opens a new section, that is a scope where some variables can be implicit.
  
  Variable U : Set.



This declares a new variable U that will be implicit in the whole section.
  Definition Operation := U -> U -> U.

This defines a new type Operation. Note that here U is an implicit type 
parameter.

  Variable op  : Operation.   (* the law     *)
  Variable e   : U.           (* the neutral *)
  Variable inv : U -> U.      (* the inverse *)

This declares 3 new variables that can be implicit.

  Definition associative : Prop :=
    forall x y z: U, op x (op y z) = op (op x y) z.

This declares what is the associativity property.

  Definition left_neutral : Prop :=
    forall x: U, op e x = x.

  Definition right_neutral : Prop :=
    forall x: U, op x e = x.

This declares what is a left neutral & right neutral element.

  Definition neutral : Prop :=
    left_neutral /\ right_neutral.

This declares what is a neutral element.

  Definition left_symmetric : Prop :=
    forall x: U, op (inv x) x = e.

  Definition right_symmetric : Prop :=
    forall x: U, op x (inv x) = e.

This declares what is a left inverse & right inverse.

  Definition symmetric_inverse : Prop :=
    left_symmetric /\ right_symmetric.

This declares what is an inverse.

  End operations.

This closes the operations section.



  End Operation.

This closes the Operation module.
The Operation module is now defined and we can print its internal type :

  Print Module Operation.

5.8. The Monoid module-type

The monoid is a familiar programmer notion. The 'a list type equipped with
the append law and the [] neutral is a monoid.  equipped with the ℕ × law and
the  1 neutral is another monoid. This is why when you do the product of an
empty  int list you  have  to  return  1 (because  that  preserves  the  monoid
structure). There even exist an ocaml  BatFingerTree module that returns an
Abstract Data Type given a monoid as a parameter.

  Module Type Monoid.

This opens the Monoid module-type declaration.

  Import Operation.

This allows Operation code usage.

  Parameter U : Set. 
  Parameter law : Operation U.  
  Parameter zero : U.

This defines 3 new parameters any monoid must have : a set, a law and a zero. 

  Axiom law_associative : associative U law.
  Axiom zero_neutral : neutral U law zero.

This introduces 2 new monoid axiom any monoid must satisfy : the law is 
associative and zero is a neutral element. 

  End Monoid.

This closes the Monoid module.

5.10. The ( ,+,0) monoid moduleℕ

This is our first coq proof : we prove that  equipped with the ℕ + law and the 0 
neutral is a monoid.



  Require Import Arith.Plus.

We import a coq library that contains basic facts about the nat type. 

  Module NatPlusZero : Monoid.

  Import Operation.

We open the NatPlusZero module, we force it to be a Monoid and we use the 
Operation module.

  Definition U := nat. 
  Definition law := plus.  
  Definition zero := O.

This 3 definitions satisfy the 3 parameters obligations. Note that within coq the 
uppercase letter 0 means zero   and the uppercase letter S means ∈ ℕ succ.

  Definition law_associative : associative U law.
  Proof.

Now we engage to prove that our law is associative. 

  unfold associative. intros.
  unfold law. rewrite plus_assoc.
  reflexivity.
  Qed.

Quod Erat Demonstrandum.

  Definition zero_neutral : neutral U law zero.
  Proof.
  unfold neutral. split.
  unfold left_neutral.
  intros. unfold law. unfold zero.
  rewrite plus_0_l. reflexivity.
  unfold right_neutral.
  intros. unfold law. unfold zero.
  rewrite plus_0_r. reflexivity.
  Qed.

  End NatPlusZero.

5.11. The Group module-type

A group is a monoid equipped with an inverse operation.



  Module Type Group.

  Include Monoid.

We reuse the Monoid module-type and will extend it.

  Import Operation.

  Parameter inverse : U -> U.

This defines 1 new parameter any group must have : an inverse operator. 

  Axiom inverse_symmetric : symmetric_inverse U law zero inverse. 

This introduces 1 new axiom any group must satisfy : the inverse of an 
element is both a left_inverse and a  right_inverse.

  End Group.
 
  Print Module Type Group.

That confirms that we actually have extended the monoid concept.

5.13. The DirectProductGroup module-function

The direct product of two groups H and K is noted H × K.
We can build this product operator as a module-function, that is a module that 
takes modules H and K as arguments and returns a new module H × K.

  Module DirectProductGroup (H K : Group) : Group.

  Import Operation.
  
  Record product : Set := make {h : H.U; k : K.U}.
  
  Definition U := product. 
  Definition law x y := make (H.law (h x) (h y)) (K.law (k x) (k y)).
  Definition zero := make H.zero K.zero.
  Definition inverse x := make (H.inverse (h x)) (K.inverse (k x)).

The definition of  the direct product is done. All we need now is to prove 
law_associative, zero_neutral and inverse_symmetric.

  Definition law_associative : associative U law.
    Proof.
    unfold associative. intros.



    unfold law. simpl.
    rewrite H.law_associative.
    rewrite K.law_associative.
    reflexivity.
    Qed.

  Definition zero_neutral : neutral U law zero.
    Proof.
    unfold neutral. split. 
    unfold left_neutral.
      intros. unfold law. simpl.
      rewrite (proj1 H.zero_neutral).
      rewrite (proj1 K.zero_neutral).
      dependent inversion x. simpl. reflexivity.
    unfold right_neutral.
      intros. unfold law. simpl.
      rewrite (proj2 H.zero_neutral).
      rewrite (proj2 K.zero_neutral).
      dependent inversion x. simpl. reflexivity.
    Qed.
 
  Definition inverse_symmetric : symmetric_inverse U law zero inverse.
    Proof.
    unfold symmetric_inverse. split.
    unfold left_inverse.
      intros.
      unfold law. unfold inverse. simpl.
      rewrite (proj1 H.inverse_symmetric).
      rewrite (proj1 K.inverse_symmetric).
      reflexivity. 
    unfold right_inverse.
      intros.
      unfold law. unfold inverse. simpl.
      rewrite (proj2 H.inverse_symmetric).
      rewrite (proj2 K.inverse_symmetric).
      reflexivity. 
    Qed.

End DirectProductGroup.

We are done with coq and maths, now it's the turn of coq for programmers.

5.12. Coq as a program code certifier

Unfortunately Coq can't directly certify ocaml code. Actually coq has his own
programming language called Gallina, and the gallina code can be certified with
coq. 

5.13. The Gallina language



The Gallina language is much like a small pure subset of ocaml.
The main differences are :

• the recursion must be well-funded
• the definitions use the := operator instead of the = operator
• the standard libraries/functions differ from the ocaml ones
• the constructors are functional (arrows) instead of a tuple argument
• the match is scoped
• the match uses the => arrow instead of the -> arrow
• Gallina allows dependant types 

5.14. The Gallina binary tree

First we define our inductive type.

  (* a tree is either empty or a nat with left & right branches *)
  Inductive tree : Set :=
    | Empty: tree
    | Fork: tree -> nat -> tree -> tree.

Now we can define the Strahler function :

  (* here are defined nat basics *)
  Require Import Arith.Arith_base.
  
  (* strahler number *)
  Fixpoint strahler t :=
    match t with
    | Empty => 0
    | Fork l n r =>
        let sl := strahler l in
        let sr := strahler r in
        if beq_nat sl sr then S sl else max sl sr    
    end.

Unfortunately proving that  strahler t is the depth of the biggest embedded
complete binary tree in  t is beyond the author’s talent. Anyway we are more
interested in the sorting capabilities of this tree type. 

5.15. The Gallina binary search tree

We still have to paraphrase our ocaml code.

  Inductive member : nat -> tree -> Prop :=
  | root_member :
      forall l n r,
      member n (Fork l n r)



  | left_member :
      forall m n l r,
      member n l ->
      member n (Fork l m r)
  | right_member :
      forall m n l r,
      member n r ->
      member n (Fork l m r).

  (* insert n in the tree t *)
  Fixpoint add n t :=
    match t with
    | Empty => Fork Empty n Empty  (* create a singleton *)
    | Fork l m r =>
        match n ?= m with
        | Eq => t                  (* n is already present *)
        | Lt => Fork (add n l) m r (* insert n in the left  branch *)
        | Gt => Fork l m (add n r) (* insert n in the right branch *)
        end
    end.

5.16. The Gallina binary search tree properties

Now we really enter the heart of the matter.

Of course it is desirable that once added an element becomes a member :

  Theorem add_main_property :
    forall n t, member n (add n t).

Of course it is also desirable that adding an element doesn't erase anything else :

  Theorem add_is_conservative :
    forall m n t, member m t -> member m (add n t).

Of course it is finally desirable that adding an element doesn't break the tree
order :

  Theorem add_preserves_order :
    forall t, tree_ordered t ->
    forall n, tree_ordered (add n t).

For some tree_ordered predicate that is still to be defined.

Chapter 5 to be continued...



Chapter 7.

Polymorphic recursion

7.1. Polymorphic recursion without data

Polymorphic recursion can appear even in a simple function example :

# let rec f x y = f x x;;
val f : 'a -> 'a -> 'b = <fun>

f is expected to have 'a->'b->'c type but surprisingly has type 'a->'a->'b.
The problem is that the second argument is not generalized enough.
We can further generalized the second argument by explicitly specifying 'b. 
'a->'b->'c as the type of f.

# let rec f : 'b. 'a -> 'b -> 'c = fun x y -> f x x;;
val f : 'a -> 'b -> 'c = <fun>

7.2. Nested data types

Nested data types are the inductives types that require polymorphic recursion.

7.3. The DoubleDimension module

The DoubleDimension module is a type-polymorphic version of the 
DirectedGraph module.
It has the same operations but this time it stores 'a * 'b values instead of the 
monomorphic int * int values.

module DoubleDimension
  :
sig
  type (+'a,+'b) t
  val empty : ('a,'b) t
  val add : 'a -> 'b -> ('a,'b) t -> ('a,'b) t
  val member : 'a -> 'b -> ('a,'b) t -> bool
  val first :  'b -> ('a,'b) t -> 'a list
  val second : 'a -> ('a,'b) t -> 'b list
  val for_all : ('a -> 'b -> bool) -> ('a,'b) t -> bool
  val subset : ('a,'b) t -> ('a,'b) t -> bool



  val equal :  ('a,'b) t -> ('a,'b) t -> bool
  val to_list : ('a,'b) t -> ('a * 'b) list
end
  =
struct (*...*)

7.4. DoubleDimension, the new type ('a,'b) t 

type (+'a,+'b) t =
  | Empty 
  | Fork of ('b,'a) t * 'a * 'b * ('b,'a) t

let empty =
  Empty 

The originality with this new tree type  ('a,'b) t is that the left  and right
branches are not ('a,'b) t but ('b,'a) t. This is an irregular type recursion.
Thus member, add and for_all operations will use polymorphic recursion plus
will have a full explicit function type. 

7.5. DoubleDimension, the member operation

It has exactly the same body code except it has full function type with 'a and
'b being further generalized as 'a 'b .

let rec member : 'a 'b . 'a -> 'b -> ('a,'b) t -> bool =
  fun x y -> function 
  | Empty -> false
  | Fork (l,u,v,r) ->
      if x < u then member y x l
      else if x > u then member y x r
      else if y = v then true
      else member y x r

7.6. DoubleDimension, the add operation

It has exactly the same body code except it has full function type with 'a and
'b being further generalized as 'a 'b .

let rec add : 'a 'b . 'a -> 'b -> ('a,'b) t -> ('a,'b) t =
  fun x y -> function 
  | Empty -> Fork(Empty,x,y,Empty)
  | Fork (l,u,v,r) as g ->
      if x < u then Fork (add y x l,u,v,r)
      else if x > u then Fork (l,u,v,add y x r)
      else if y = v then g
      else Fork (l,u,v,add y x r)



7.7. DoubleDimension, the first & second operations

The  first operation is a new name for the old  predecessors operation and
the  second operation  is  a  new  name  for  the  old  successors operation.
Otherwise nothing has changed.

let apply f w acc = function
  | Empty -> acc
  | Fork (l,u,v,r) ->
      f w (f w (if w = v then u::acc else acc) r) l

let rec loop key acc = function
  | Empty -> []
  | Fork (l,u,v,r) ->
      if key < u then apply loop key acc l
      else if key > u then apply loop key acc r
      else v::apply loop key acc r

let first y =
  apply loop y []

let second x =
  loop x []

7.8. DoubleDimension, the for_all operation

The for_all operation tells if all elements in the set satisfy a predicate. What is
the type of this predicate ? Either it is  'a->'b->bool or it is  'b->'a->bool.
Actually it depends if we are at an even depth level or an odd depth level. We
need both, we call them p and q and swap them at each new depth level.

let rec for_all :
  'a 'b .
  ('a -> 'b -> bool) -> ('b -> 'a -> bool) -> ('a,'b) t -> bool
  =
  fun p q -> function 
  | Empty -> true 
  | Fork (l,u,v,r) -> for_all q p l && p u v && for_all q p r

Now we need to compute a 'b->'a->bool value from an 'a->'b->bool value.

(* apply 2 function arguments in swapped order *)
let flip f x y =
  f y x

Now we can define for_all in its simplest form.



(* checks if all elements satisfy the predicate p *)
let for_all p =
  for_all p (flip p)

7.9. DoubleDimension, the subset & equal operations

The subset operation is a new name for the old subgraph operation. It is now 
simply defined using for_all.

(* is ta a subset of tb ? *)
let subset ta tb =
  for_all (fun a b -> member a b tb) ta

Set equality is reciprocal inclusion : 

(* set equality *)
let equal ta tb =
   subset ta tb && subset tb ta

7.10. DoubleDimension, the to_list operation

The to_list t operation converts t to a list of pairs. What is the type of these
pairs ? Either it is 'a * 'b or it is 'b * 'a. Actually it depends if we are at an
even depth level or an odd depth level. We call this new type 'c. We need two
functions to create a 'c element from 'a and 'b elements, we call them fu and
fv and swap them at each new depth level.

(* linearization *)  
let rec to_list :
  'a 'b . 
  'c list -> ('a->'b->'c) -> ('b->'a ->'c) -> ('a,'b) t -> 'c list
  = 
  fun acc fu fv -> function
  | Empty ->
      acc
  | Fork (l,u,v,r) -> 
      to_list (fu u v::to_list acc fv fu r) fv fu l

let to_list t =
  to_list [] (fun u v -> u,v) (fun v u -> u,v) t

7.11. The RandomAccessList module

The RandomAccessList module is an alternative to the BraunStack module. It
has the same operations but this time it stores polymorph 'a values instead of



the monomorph int values. Another difference is that BraunStack is based on
a Braun tree whereas RandomAccessList is based on base 2 numerals.

module RandomAccessList
  :
sig
  type +'a t
  val empty : 'a t
  val is_empty : 'a t -> bool
  val singleton : 'a -> 'a t 
  val size : 'a t -> int
  val add : 'a -> 'a t -> 'a t
  val member : int -> 'a t -> 'a
  val remove : 'a t -> 'a t
  val replace : int -> 'a -> 'a t -> 'a t
  val meld : 'a t -> 'a t -> 'a t
end
  =
struct (*...*)

7.12. RandomAccessList, the new type 'a t

type +'a t =
  | Empty
  | Zero of ('a * 'a) t
  | One of 'a * ('a * 'a) t

The originality with this new list type 'a t is that the tail is not 'a t but ('a *
'a) t.  This is an irregular type recursion.  This time all  operations will  use
polymorphic recursion plus will have a full explicit function type. Remark that
One has both a head and a tail whereas Zero only has a tail. A Zero holds zero

items whereas a One holds 2n items.

let empty =
  Empty

let is_empty l =
  l = Empty

A singleton contains only one item.

let singleton x =
  One(x,Empty)

7.13. RandomAccessList, the size operation

The size operation is even faster than its BraunStack counterpart.



let rec size : 'a . 'a t -> int =
  function
  | Empty -> 0
  | Zero t -> 2 * size t
  | One (_,t) -> 1 + 2 * size t

7.14. RandomAccessList, the add operation 

The add operation acts much like a base 2 number increment.

let rec add : 'a . 'a -> 'a t -> 'a t =
  fun x -> function
  | Empty -> One (x,Empty)
  | Zero t -> One(x,t)
  | One(y,t) -> Zero(add (x,y) t)

7.15. RandomAccessList, the member operation

Now we want to know the last added item or any older item.
The last item will be member 0, the last but 1 will be member 1, and so on ...

let rec member : 'a . int -> 'a t -> 'a =
  fun i -> function
  | Empty -> invalid_arg "RandomAccessList.member"
  | One (x,_) when i = 0 -> x
  | One (_,t) -> member (i - 1) (Zero t)
  | Zero t ->
      let x,y = member (i / 2) t in
      if i mod 2 = 0 then x else y

7.16. RandomAccessList, the remove operation

The remove operation acts much like a base 2 number decrement.

let rec remove : 'a . 'a t -> 'a * 'a t =
  function
  | Empty -> invalid_arg "RandomAccessList.remove"
  | One (x, Empty) -> x,Empty
  | One (x, t) -> x,Zero t
  | Zero t -> let (x,y),s = remove t in x,One(y,s)

let remove t =
  snd (remove t)

We keep only the tail part of the remove t operation because the head part is 
member 0 and we want consistency with the BraunStack.remove operation.



7.17. RandomAccessList, the replace operation

The replace i x operation binds the member i item to the value x.

let replace i v =
  let rec go : 'a . ('a -> 'a) -> int -> 'a t -> 'a t =
    fun f n -> function
    | Empty -> invalid_arg "RandomAccessList.replace"
    | One(x,t) ->
        if n=0 then One(f x,t)
        else add x (go f (n - 1) (Zero t))
    | Zero t ->
        let g (x,y) = if n mod 2 = 0 then (f x, y) else (x, f y)
        in Zero (go g (n / 2) t)
  in go (fun x -> v) i

7.18. RandomAccessList, the meld operation

The meld operation acts much like a base 2 number addition.

(* like an append but does not preserve item rank *)
let rec meld : 'a . 'a t -> 'a t -> 'a t =
  fun la lb -> match la,lb with
  | Empty      , ta
  |         ta , Empty       -> ta
  | Zero    ta , Zero    tb  -> Zero (meld ta tb)
  | Zero    ta , One (x, tb)
  | One (x, ta), Zero    tb  -> One (x, meld ta tb)
  | One (x, ta), One (y, tb) -> Zero (add (x, y) (meld ta tb))


